

The NATO Armaments Ballistic Kernel NATO's Embeddable Ballistics Computation Tool

NDIA 36th Annual Gun & Ammunition Symposium and Exhibition **Gun Systems & Fire Control Session**

11 April 2001

Presented by:

André J. Sowa Firing Tables and AeroBallistics U.S. Army TACOM-ARDEC ATTN: AMSTA-AR-FSF-T, Building 120 Aberdeen Proving Ground, MD 21005-5001 **UNITED STATES**

[1] 410-278-4227 [DSN 298] FAX: 278-3762

email: asowa@pica.army.mil

Questions Addressed

- What is the NATO Armaments Ballistic Kernel?
- Who are the developers?
- Why develop a Ballistic Kernel?
- How is the product being developed?
- What is the program status?
- What controls are on the information?

Fire Control Ballistics Domain

Sharable Fire Control Software Kernels

What does the NABK do?

- Anything that requires knowledge of trajectories or is related to ballistics
- Trajectory simulation
- Computes gun orders
- Charge selection
- Muzzle velocity management
- Calculates and selects registration corrections
- Includes fire support coordination measures that require trajectory information (e.g. near crest, far crest, and ACA locations)

What does the NABK NOT do?

- Ammunition selection
- Effectiveness calculations
- Fire support coordination measures that do not require trajectory data (e.g. no fire areas)
- Does not know target details just aim points
- Does not know about locations of forward observers
- Does not have its own interfaces to digital communication equipment (info is passed by OPr)

Developers

- International development effort under the auspices of the NATO Army Armaments Group AC/225 Land Group 4, Sub-Group 2 on Ballistics
- Current countries involved
 - Belgium, Canada, Denmark, France, Germany, Italy, Netherlands, Norway, Poland, Turkey, United Kingdom, **United States**
- Procedures being proposed to include participation by Partners for Peace through NATO member country sponsorship

Rationale for Program

- To significantly reduce or eliminate duplication of effort by standardizing the implementation of NATO ballistic technology
- To avoid significant expenditure of time and money in future development and updates of ballistic fire control software
- To ensure accuracy and reliability
- To establish a common method to facilitate the use of NATO ammunition interchangeability
- To develop a single software package that is reusable across multiple weapon systems

Development Process

- Program guidance (STANAG 4537) established
- Software development plan established and maintained
- Key areas managed:
 - Requirements, Technology, Database Development, Software Development, Configuration Management, Quality Assurance, Policy
 - Peer review integral to each area
- Program documentation (AOP-37 and source documents) established and maintained
- Overall program review initially held every 4 months, now every 6 months; appropriate persons in each key area communicate and meet as required

Key Design Goals

- Plan, design and engineer the code for safety and reuse
- Develop the software in the Ada95 programming language
- Allow Fire Control Inputs data to be updated without modifying source code
- Accommodate each country's Fire Control Inputs and the implementation of AOP-29
- Make the software configurable without modifying source code
- Check all input for correctness; verify the integrity of the Fire Control Inputs

NABK Software Architecture

Current Status

• Software releases:

Version	Release Date	Meets U.S. Ramts for:
1.0	Sep 98	Dragon Fire Demo
1.0+	Dec 98	Paladin V11
1.1	Feb 99	
1.5	Jul 99	Crusader, MK 92
1.6	Sep 99	
1.63	Apr 00	AFATDS-99
2.0	Sep 00	
3.0	Release scheduled for Jun 01	
3.5	Release scheduled for Mar 02	
4.0	Release scheduled for Jun 02 ✓	

• 10 countries currently implementing NABK

National Implementations

- 10 countries currently implementing the NABK
- 21 current implementations being worked
- 21 future additional implementations planned
- 3 different compilers being used: Aonix, GNAT, Rational

U.S. Applications of NABK Software

Controls on Information

- Program guided by STANAG 4537 and documented in the associated AOP-37 and source documents
- All NATO member nations can implement the NABK into their national weapon systems
- Appropriate contractors must formally agree and adhere to non-disclosure and non-use criteria
- Only participating NATO member nations can sell a product containing the NABK (executable code)
- Procedures are being proposed to include participation by Partners for Peace through NATO member country sponsorship

Summary

- The NABK standardizes the implementation of NATO ballistic fire control technology in a reusable and sharable product
- Reliability is ensured through extensive code review, testing, and product use
- The NABK provides for horizontal integration across weapon systems
- Life cycle maintainability and cost avoidance are being realized

Supporting Standardization Agreements

Fire Control Inputs Database Layer

- Contains pertinent projectile and weapon data
 - aerodynamic coefficients
 - physical characteristics (caliber, weight, moments of inertia, etc.)
 - probable error data
 - propulsion characteristics
 - payload characteristics
 - fuze data
 - interchangeability data
- ASCII file or embedded Ada code
- Accessed by all layers

- Portion accessible to other fire control system configuration items which require data such as
 - legal wpn/proj combinations
 - maximum and minimum range data
 - probable error data

Equations of Motion Layer

Single trajectory simulation

• Input:

- Azimuth
- Elevation
- Muzzle Velocity
- Gun position
- Meteorological conditions

• Output:

- Impact or fuze function point
- Time of flight
- Trajectory flight path

Computation Layer

- Communicates with equations of motion layer
- Iterates on azimuth and elevation to converge on a trajectory solution to hit desired target(s)
- Solutions generated for low angle or high angle fire

Fire Mission Layer

- Bridge between technical ballistics and operational procedures
- Interface to operational processor

- Access to all databases
- Input is a set of aimpoints
- Charge selection
 - Made by input from operational processor or
 - Selected using predefined criteria
- Accounts for MVV and registration correction data and performs checks for air corridor and crest violations
- Governs computational processing of each fire mission
- Can handle a number of fire